Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Physiol ; 15: 1268380, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318197

RESUMO

Resistance exercise (RE) training and pharmacological stimulation of ß2-Adrenoceptors (ß2-ARs) alone can promote muscle hypertrophy and prevent muscle atrophy. Although the activation of the sympathetic nervous system (SNS) is a well-established response during RE, the physiological contribution of the endogenous catecholamines and ß2-ARs to the RE-induced changes on skeletal muscle protein metabolism remains unclear. This study investigated the effects of the ß2-ARs blockade on the acute molecular responses induced by a single bout of RE in rodent skeletal muscles. Male C57BL6/J mice were subjected to a single bout of progressive RE (until exhaustion) on a vertical ladder under ß2-AR blockade with ICI 118,551 (ICI; 10 mg kg-1, i. p.), or vehicle (sterile saline; 0.9%, i. p.), and the gene expression was analyzed in gastrocnemius (GAS) muscles by qPCR. We demonstrated that a single bout of RE acutely increased the circulating levels of stress-associated hormones norepinephrine (NE) and corticosterone (CORT), as well as the muscle phosphorylation levels of AMPK, p38 MAPK and CREB, immediately after the session. The acute increase in the phosphorylation levels of CREB was followed by the upregulation of CREB-target genes Sik1, Ppargc1a and Nr4a3 (a central regulator of the acute RE response), 3 h after the RE session. Conversely, ß2-AR blockade reduced significantly the Sik1 and Nr4a3 mRNA levels in muscles of exercised mice. Furthermore, a single bout of RE stimulated the mRNA levels of the atrophic genes Map1lc3b and Gabarapl1 (autophagy-related genes) and Mstn (a well-known negative regulator of muscle growth). Unexpectedly, the gene expression of Igf-1 or Il-6 were not affected by RE, while the atrophic genes Murf1/Trim63 and Atrogin-1/Mafbx32 (ubiquitin-ligases) were increased only in muscles of exercised mice under ß2-AR blockade. Interestingly, performing a single bout of RE under ß2-AR blockade increased the mRNA levels of Mstn in muscles of exercised mice. These data suggest that ß2-ARs stimulation during acute RE stimulates the hypertrophic gene Nr4a3 and prevents the overexpression of atrophic genes such as Mstn, Murf1/Trim63, and Atrogin-1/Mafbx32 in the first hours of postexercise recovery, indicating that he SNS may be physiologically important to muscle adaptations in response to resistance training.

2.
An Acad Bras Cienc ; 95(suppl 2): e20220877, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38055559

RESUMO

Although there are reports that polyphenol resveratrol (Rsv) may cause muscle hypertrophy in basal conditions and attenuate muscle wasting in catabolic situations, its mechanism of action is still unclear. Our study evaluated the ex vivo effects of Rsv on protein metabolism and intracellular signaling in innervated (sham-operated; Sham) and 3-day sciatic denervated (Den) rat skeletal muscles. Rsv (10-4 M) reduced total proteolysis (40%) in sham muscles. Den increased total proteolysis (~40%) in muscle, which was accompanied by an increase in the activities of ubiquitin-proteasome (~3-fold) and lysosomal (100%) proteolytic systems. Rsv reduced total proteolysis (59%) in Den muscles by inhibiting the hyperactivation of ubiquitin-proteasome (50%) and lysosomal (~70%) systems. Neither Rsv nor Den altered calcium-dependent proteolysis in muscles. Mechanistically, Rsv stimulated PKA/CREB signaling in Den muscles, and PKA blockage by H89 (50µM) abolished the antiproteolytic action of the polyphenol. Rsv reduced FoxO4 phosphorylation (~60%) in both Sham and Den muscles and Akt phosphorylation (36%) in Den muscles. Rsv also caused a homeostatic effect in Den muscles by returning their protein synthesis rates to levels similar to Sham muscles. These data indicate that Rsv directly inhibits the proteolytic activity of lysosomal and ubiquitin-proteasome systems, mainly in Den muscles through, at least in part, the activation of PKA/CREB signaling.


Assuntos
Músculo Esquelético , Complexo de Endopeptidases do Proteassoma , Ratos , Animais , Proteólise , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/farmacologia , Resveratrol/farmacologia , Músculo Esquelético/metabolismo , Ratos Wistar , Ubiquitinas/metabolismo , Ubiquitinas/farmacologia
3.
Temperature (Austin) ; 10(3): 287-312, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554383

RESUMO

This study systematically reviewed the literature reporting the changes in rats' core body temperature (TCORE) induced by either incremental- or constant-speed running to fatigue or exhaustion. In addition, multiple linear regression analyses were used to determine the factors contributing to the TCORE values attained when exercise was interrupted. Four databases (EMBASE, PubMed, SPORTDiscus, and Web of Science) were searched in October 2021, and this search was updated in August 2022. Seventy-two studies (n = 1,538 rats) were included in the systematic review. These studies described heterogeneous experimental conditions; for example, the ambient temperature ranged from 5 to 40°C. The rats quit exercising with TCORE values varying more than 8°C among studies, with the lowest and highest values corresponding to 34.9°C and 43.4°C, respectively. Multiple linear regression analyses indicated that the ambient temperature (p < 0.001), initial TCORE (p < 0.001), distance traveled (p < 0.001; only incremental exercises), and running speed and duration (p < 0.001; only constant exercises) contributed significantly to explaining the variance in the TCORE at the end of the exercise. In conclusion, rats subjected to treadmill running exhibit heterogeneous TCORE when fatigued or exhausted. Moreover, it is not possible to determine a narrow range of TCORE associated with exercise cessation in hyperthermic rats. Ambient temperature, initial TCORE, and physical performance-related variables are the best predictors of TCORE at fatigue or exhaustion. From a broader perspective, this systematic review provides relevant information for selecting appropriate methods in future studies designed to investigate exercise thermoregulation in rats.

4.
J Sport Rehabil ; 32(6): 635-644, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37156538

RESUMO

CONTEXT: Knowing the methods to assess the external load in Paralympic sports can help multidisciplinary teams rely on scientific evidence to better prescribe and monitor the athlete's development, improving sports performance and reducing the risk of injury/illness of Paralympic athletes. OBJECTIVES: This review aimed to systematically explore the current practices of quantifying the external load in Paralympic sports and provide an overview of the methods and techniques used. EVIDENCE ACQUISITION: A search in PubMed, Web of Science, Scopus, and EBSCO was carried out until November 2022. The measures of interest were objective methods for quantifying the external load of training or competition. The inclusion criteria for the studies were as follows: (1) peer-reviewed article; (2) the population were Paralympic athletes; (3) evaluated during training or competition; (4) reported at least one external load measure; and (5) published in English, Portuguese, or Spanish. EVIDENCE SYNTHESIS: Of the 1961 articles found, 22 were included because they met the criteria, and 8 methods were identified to quantify the external load in training or competition in 8 Paralympic sports. The methods varied according to the characteristics of the Paralympic sports. To date, the devices used included an internal radiofrequency-based tracking system (wheelchair rugby) a miniaturized data logger (wheelchair tennis, basketball, and rugby); a linear position transducer (powerlifting and wheelchair basketball); a camera (swimming, goalball, and wheelchair rugby); a global positioning system (wheelchair tennis); heart rate monitors that assess external load variables in set (paracycling and swimming) and an electronic timer (swimming). CONCLUSIONS: Different objective methods were identified to assess the external load in Paralympic sports. However, few studies showed the validity and reliability of these methods. Further studies are needed to compare different methods of external load quantification in other Paralympic sports.


Assuntos
Desempenho Atlético , Basquetebol , Tênis , Humanos , Reprodutibilidade dos Testes , Desempenho Atlético/fisiologia , Natação , Atletas
5.
Exp Physiol ; 108(6): 852-864, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37018484

RESUMO

NEW FINDINGS: What is the central question of this study? The aim was to identify the factors predicting the body core temperature of athletes at the end of a 10 km self-paced run in a hot environment. What is the main finding and its importance? Hyperthermia in athletes subjected to self-paced running depends on several factors, highlighting the integrated control of core temperature during exercise under environmental heat stress. Five of the seven variables that significantly predicted core temperature are not invasive and, therefore, practical for use outside the laboratory environment: heart rate, sweat rate, wet-bulb globe temperature, running speed and maximal oxygen consumption. ABSTRACT: Measurement of body core temperature (Tcore ) is paramount to determining the thermoregulatory strain of athletes. However, standard measurement procedures of Tcore are not practical for extended use outside the laboratory environment. Therefore, determining the factors that predict Tcore during a self-paced run is crucial for creating more effective strategies to minimize the heat-induced impairment of endurance performance and reduce the occurrence of exertional heatstroke. The aim of this study was to identify the factors predicting Tcore values attained at the end of a 10 km time trial (end-Tcore ) under environmental heat stress. Initially, we extracted data obtained from 75 recordings of recreationally trained men and women. Next, we ran hierarchical multiple linear regression analyses to understand the predictive power of the following variables: wet-bulb globe temperature, average running speed, initial Tcore , body mass, differences between Tcore and skin temperature (Tskin ), sweat rate, maximal oxygen uptake, heart rate and change in body mass. Our data indicated that Tcore increased continuously during exercise, attaining 39.6 ± 0.5°C (mean ± SD) after 53.9 ± 7.5 min of treadmill running. This end-Tcore value was primarily predicted by heart rate, sweat rate, differences between Tcore and Tskin , wet-bulb globe temperature, initial Tcore , running speed and maximal oxygen uptake, in this order of importance (ß power values corresponded to 0.462, -0.395, 0.393, 0.327, 0.277, 0.244 and 0.228, respectively). In conclusion, several factors predict Tcore in athletes subjected to self-paced running under environmental heat stress. Moreover, considering the conditions investigated, heart rate and sweat rate, two practical (non-invasive) variables, have the highest predictive power.


Assuntos
Transtornos de Estresse por Calor , Corrida , Masculino , Humanos , Feminino , Temperatura Corporal/fisiologia , Temperatura , Temperatura Alta , Regulação da Temperatura Corporal/fisiologia , Corrida/fisiologia , Resposta ao Choque Térmico/fisiologia , Oxigênio
6.
Microorganisms ; 11(2)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36838304

RESUMO

Antarctic camps pose psychophysiological challenges related to isolated, confined, and extreme (ICE) conditions, including meals composed of sealed food. ICE conditions can influence the microbiome and inflammatory responses. Seven expeditioners took part in a 7-week Antarctic summer camp (Nelson Island) and were evaluated at Pre-Camp (i.e., at the beginning of the ship travel), Camp-Initial (i.e., 4th and 5th day in camp), Camp-Middle (i.e., 19th-20th, and 33rd-34th days), Camp-Final (i.e., 45th-46th day), and at the Post-Camp (on the ship). At the Pre-Camp, Camp-Initial, and Camp-Final, we assessed microbiome and inflammatory markers. Catecholamines were accessed Pre- and Post-Camp. Heart rate variability (HRV), leptin, thyroid stimulating hormone (TSH), and thyroxine (T4) were accessed at all time points. Students' t-tests or repeated-measures analysis of variance (one or two-way ANOVA) followed by Student-Newman-Keuls (post hoc) were used for parametric analysis. Kruskal-Wallis test was applied for non-parametric analysis. Microbiome analysis showed a predominance of Pseudomonadota (34.01%), Bacillota (29.82%), and Bacteroidota (18.54%), followed by Actinomycetota (5.85%), and Fusobacteria (5.74%). Staying in a long-term Antarctic camp resulted in microbiome fluctuations with a reduction in Pseudomonadota-a "microbial signature" of disease. However, the pro-inflammatory marker leptin and IL-8 tended to increase, and the angiogenic factor VEGF was reduced during camp. These results suggest that distinct Antarctic natural environments and behavioral factors modulate oral microbiome and inflammation.

7.
J Sport Rehabil ; 32(2): 203-214, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36150706

RESUMO

CONTEXT: Sleep serves many important functions for athletes, particularly in the processes of learning, memory, recovery, and cognition. OBJECTIVES: Define the sleep parameters of Paralympic athletes and identify the instruments used to assess and monitor sleep Paralympic athletes. EVIDENCE ACQUISITION: This systematic review was carried out based on the PRISMA guidelines. The survey was conducted in April 2020, the searches were carried out again in September 2021 to check whether there were new scientific publications in the area of sleep and Paralympic sport, searches were performed in the following databases: PubMed, Web of Science, Scopus, SPORTDiscus, Virtual Health Library (BIREME), and SciELO. This systematic review has included studies that investigated at least one of the following sleep parameters: total sleep time, sleep latency, sleep efficiency, number of awakenings, quality of sleep, daytime sleepiness, and chronotype; the participants were comprised of athletes with disabilities. Studies published at any time in English, Portuguese, and Spanish, were included. EVIDENCE SYNTHESIS: Data extraction and study selection were performed by 2 researchers independently, and a third author was consulted as necessary. The search returned a total of 407 studies. Following the screening based on exclusion and inclusion criteria, a total of 13 studies were considered. Paralympic athletes have a low amount (7.06 h) of sleep with poor quality and sleep latency (28.05 min), and 57.2% have daytime sleepiness, with the majority belonging to the indifferent chronotype (53, 5%). Moreover, 11 studies assess sleep using subjective instruments (questionnaires), and 2 studies used an objective instrument (actigraphy). CONCLUSIONS: Sleep disorders are common among Paralympic athletes, poor sleep quality and quantity, and high rates of daytime sleepiness. Subjective methods are most commonly used to assess sleep.


Assuntos
Distúrbios do Sono por Sonolência Excessiva , Paratletas , Distúrbios do Início e da Manutenção do Sono , Esportes , Humanos , Sono , Atletas
8.
J Cachexia Sarcopenia Muscle ; 13(4): 2175-2187, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35582969

RESUMO

BACKGROUND: Fetal stage is a critical developmental window for the skeletal muscle, but little information is available about the impact of maternal vitamin D (Vit. D) deficiency (VDD) on offspring lean mass development in the adult life of male and female animals. METHODS: Female rats (Wistar Hannover) were fed either a control (1000 IU Vit. D3/kg) or a VDD diet (0 IU Vit. D3/kg) for 6 weeks and during gestation and lactation. At weaning, male and female offspring were randomly separated and received a standard diet up to 180 days old. RESULTS: Vitamin D deficiency induced muscle atrophy in the male (M-VDD) offspring at the end of weaning, an effect that was reverted along the time. Following 180 days, fast-twitch skeletal muscles [extensor digitorum longus (EDL)] from the M-VDD showed a decrease (20%; P < 0.05) in the number of total fibres but an increase in the cross-sectional area of IIB (17%; P < 0.05), IIA (19%; P < 0.05) and IIAX (21%; P < 0.05) fibres. The fibre hypertrophy was associated with the higher protein levels of MyoD (73%; P < 0.05) and myogenin (55% %; P < 0.05) and in the number of satellite cells (128.8 ± 14 vs. 91 ± 7.6 nuclei Pax7 + in the M-CTRL; P < 0.05). M-VDD increased time to fatigue during ex vivo contractions of EDL muscles and showed an increase in the phosphorylation levels of IGF-1/insulin receptor and their downstream targets related to anabolic processes and myogenic activation, including Ser 473 Akt and Ser 21/9 GSK-3ß. In such muscles, maternal VDD induced a compensatory increase in the content of calcitriol (two-fold; P < 0.05) and CYP27B1 (58%; P < 0.05), a metabolizing enzyme that converts calcidiol to calcitriol. Interestingly, most morphological and biochemical changes found in EDL were not observed in slow-twitch skeletal muscles (soleus) from the M-VDD group as well as in both EDL and soleus muscles from the female offspring. CONCLUSIONS: These data show that maternal VDD selectively affects the development of type-II muscle fibres in male offspring rats but not in female offspring rats and suggest that the enhancement of their size and fatigue resistance in fast-twitch skeletal muscle (EDL) is probably due to a compensatory increase in the muscle content of Vit. D in the adult age.


Assuntos
Fibras Musculares de Contração Lenta , Deficiência de Vitamina D , Animais , Calcitriol/análise , Calcitriol/metabolismo , Calcitriol/farmacologia , Feminino , Glicogênio Sintase Quinase 3 beta/análise , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/farmacologia , Masculino , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Lenta/fisiologia , Músculo Esquelético/metabolismo , Ratos , Ratos Wistar , Deficiência de Vitamina D/complicações , Deficiência de Vitamina D/metabolismo
9.
Mol Metab ; 60: 101492, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35390501

RESUMO

OBJECTIVE: Although it is well established that urocortin 2 (Ucn2), a peptide member of the corticotrophin releasing factor (CRF) family, and its specific corticotrophin-releasing factor 2 receptor (CRF2R) are highly expressed in skeletal muscle, the role of this peptide in the regulation of skeletal muscle mass and protein metabolism remains elusive. METHODS: To elucidate the mechanisms how Ucn2 directly controls protein metabolism in skeletal muscles of normal mice, we carried out genetic tools, physiological and molecular analyses of muscles in vivo and in vitro. RESULTS: Here, we demonstrated that Ucn2 overexpression activated cAMP signaling and promoted an expressive muscle hypertrophy associated with higher rates of protein synthesis and activation of Akt/mTOR and ERK1/2 signaling pathways. Furthermore, Ucn2 induced a decrease in mRNA levels of atrogin-1 and in autophagic flux inferred by an increase in the protein content of LC3-I, LC3-II and p62. Accordingly, Ucn2 reduced both the transcriptional activity of FoxO in vivo and the overall protein degradation in vitro through an inhibition of lysosomal proteolytic activity. In addition, we demonstrated that Ucn2 induced a fast-to-slow fiber type shift and improved fatigue muscle resistance, an effect that was completely blocked in muscles co-transfected with mitogen-activated protein kinase phosphatase 1 (MKP-1), but not with dominant-negative Akt mutant (Aktmt). CONCLUSIONS: These data suggest that Ucn2 triggers an anabolic and anti-catabolic response in skeletal muscle of normal mice probably through the activation of cAMP cascade and participation of Akt and ERK1/2 signaling. These findings open new perspectives in the development of therapeutic strategies to cope with the loss of muscle mass.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Proteínas Proto-Oncogênicas c-akt , Urocortinas/metabolismo , Hormônio Adrenocorticotrópico/metabolismo , Hormônio Adrenocorticotrópico/farmacologia , Animais , Hipertrofia/metabolismo , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Urocortinas/farmacologia
10.
An Acad Bras Cienc ; 94(suppl 1): e20210593, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35239799

RESUMO

We evaluated the influence of a 32-day camping in Antarctica on physical performance and exercise-induced thermoregulatory responses. In Brazil, before and after the Antarctic camping, the volunteers performed an incremental exercise at temperate conditions and, two days later, an exercise heat stress protocol (45-min running at 60% of maximum aerobic speed, at 31°C and 60% of relative humidity). In Antarctica, core temperature was assessed on a day of fieldwork, and average values higher than 38.5°C were reported. At pre- and post-Antarctica, physiological (whole-body and local sweat rate, number of active sweat glands, sweat gland output, core and skin temperatures) and perceptual (thermal comfort and sensation) variables were measured. The Antarctic camping improved the participants' performance and induced heat-related adaptations, as evidenced by sweat redistribution (lower in the chest but higher in grouped data from the forehead, forearm, and thigh) and reduced skin temperatures in the forehead and chest during the exercise heat stress protocol. Notwithstanding the acclimatization, the participants did not report differences of the thermal sensation and comfort. In conclusion, staying in an Antarctic camp for 32 days improved physical performance and elicited physiological adaptations to heat due to the physical exertion-induced hyperthermia in the field.


Assuntos
Termotolerância , Aclimatação/fisiologia , Regiões Antárticas , Temperatura Corporal/fisiologia , Exercício Físico/fisiologia , Temperatura Alta , Humanos
11.
Motriz (Online) ; 28: e10220016321, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1386374

RESUMO

Abstract Aim: This study aims to compare the sleep parameters in Paralympic powerlifting athletes during days with and without training, and to analyze the relationship between the training load and sleep on the same day and the relationship between the previous night's sleep and the training load of the following day. Methods: Actigraphy was used to analyze the sleep parameters of 11 Paralympic powerlifting athletes for 14 days (7 days without and with training), whereas Ratings of Perceived Exertion (RPE) analysis was used to assess training load. In addition, the Horne and östberg chronotype questionnaire and the Epworth Sleepiness Scale were applied. Results: Athletes show morning and indifferent chronotype and low daytime sleepiness. We found that on training days, sleep onset latency (SOL) was lower (average 5.3 min faster), whereas total sleep time (TST) and sleep efficiency (SE) were higher (TST averaged 169 min and SE 7% higher) compared to non-training days. In addition, the TST of the night before the training days correlated positively with the RPE of the following day, and the training volume correlated negatively with the SE of the same day. Conclusion: Our findings show that Paralympic powerlifting training had positive effects in increasing TST and SE and decreasing SOL on training days. These results show the positive effects of this type of training in improving sleep in athletes with physical disabilities. In addition, a good night's sleep the day before training can make it possible to put more effort into the next day's training. Therefore, guiding athletes to sleep more before training with more intense loads is recommended.


Assuntos
Humanos , Sono , Esportes para Pessoas com Deficiência , Treino Aeróbico , Paratletas , Actigrafia/instrumentação
12.
Mol Metab ; 51: 101226, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33812060

RESUMO

OBJECTIVE: MicroRNAs (miRNA) are known to regulate the expression of genes involved in several physiological processes including metabolism, mitochondrial biogenesis, proliferation, differentiation, and cell death. METHODS: Using "in silico" analyses, we identified 219 unique miRNAs that potentially bind to the 3'UTR region of a critical mitochondrial regulator, the peroxisome proliferator-activated receptor gamma coactivator (PGC) 1 alpha (Pgc1α). Of the 219 candidate miRNAs, miR-696 had one of the highest interactions at the 3'UTR of Pgc1α, suggesting that miR-696 may be involved in the regulation of Pgc1α. RESULTS: Consistent with this hypothesis, we found that miR-696 was highly expressed in the skeletal muscle of STZ-induced diabetic mice and chronic high-fat-fed mice. C2C12 muscle cells exposed to palmitic acid also exhibited a higher expression of miR-696. This increased expression corresponded with a reduced expression of oxidative metabolism genes and reduced mitochondrial respiration. Importantly, reducing miR-696 reversed decreases in mitochondrial activity in response to palmitic acid. Using C2C12 cells treated with the AMP-activated protein kinase (AMPK) activator AICAR and skeletal muscle from AMPKα2 dominant-negative (DN) mice, we found that the signaling mechanism regulating miR-696 did not involve AMPK. In contrast, overexpression of SNF1-AMPK-related kinase (SNARK) in C2C12 cells increased miR-696 transcription while knockdown of SNARK significantly decreased miR-696. Moreover, muscle-specific transgenic mice overexpressing SNARK exhibited a lower expression of Pgc1α, elevated levels of miR-696, and reduced amounts of spontaneous activity. CONCLUSIONS: Our findings demonstrate that metabolic stress increases miR-696 expression in skeletal muscle cells, which in turn inhibits Pgc1α, reducing mitochondrial function. SNARK plays a role in this process as a metabolic stress signaling molecule inducing the expression of miR-696.


Assuntos
Diabetes Mellitus Experimental/patologia , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Proteínas Serina-Treonina Quinases/metabolismo , Regiões 3' não Traduzidas , Adenilato Quinase/metabolismo , Animais , Linhagem Celular , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Dieta Hiperlipídica/efeitos adversos , Regulação para Baixo , Técnicas de Silenciamento de Genes , Humanos , Masculino , Redes e Vias Metabólicas/genética , Camundongos , Camundongos Transgênicos , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Proteínas Serina-Treonina Quinases/genética , Estreptozocina/administração & dosagem , Estreptozocina/toxicidade
13.
Chin J Physiol ; 63(4): 171-178, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32859884

RESUMO

During overnight sleep, the longest postabsorptive and inactive phase of the day causes protein catabolism and loss. However, the daytime ingestion of dairy proteins has been shown to stimulate muscle protein synthesis and growth. This study compared the effects of pre-sleep supplementation of a protein blend (PB) composed of micellar casein (MCa) and whey protein (1:1) versus isolate MCa on the plasma levels of branched-chain amino acids (BCAAs) and the activation of the mechanistic target of rapamycin (mTOR) signaling, a critical intracellular pathway involved in the regulation of muscle protein synthesis. After 10 h of fasting during the active phase, rats were fed with a single dose of PB or MCa (5.6 g protein/kg of body mass) by gavage, and samples of blood and gastrocnemius muscle were collected at 30, 90, and 450 min. PB and MCa supplementations induced an increase (~3-fold, P < 0.001) of plasma BCAAs at 30 and 90 min. Most importantly, the stimulatory phosphorylation levels of mTOR and its downstream target p70 ribosomal protein S6 kinase (p70S6K) were similarly higher (~2.5-fold, P < 0.001) 30 and 90 min after MCa and PB. Plasma levels of leucine, isoleucine, valine, and overall BCAAs were correlated with the activation of mTOR (P < 0.001) and p70S6K (P < 0.001). MCa and PB supplementations before the inactive phase of rats resulted in an anabolic milieu in the skeletal muscle by inducing a transient increase in plasma BCAAs and a similar activation of the mTOR/p70S6K axis.


Assuntos
Músculo Esquelético , Animais , Caseínas , Suplementos Nutricionais , Leucina , Fosforilação , Ratos , Sirolimo , Serina-Treonina Quinases TOR
14.
FASEB J ; 34(9): 12946-12962, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32772437

RESUMO

Although we have shown that catecholamines suppress the activity of the Ubiquitin-Proteasome System (UPS) and atrophy-related genes expression through a cAMP-dependent manner in skeletal muscle from rodents, the underlying mechanisms remain unclear. Here, we report that a single injection of norepinephrine (NE; 1 mg kg-1 ; s.c) attenuated the fasting-induced up-regulation of FoxO-target genes in tibialis anterior (TA) muscles by the stimulation of PKA/CREB and Akt/FoxO1 signaling pathways. In addition, muscle-specific activation of PKA by the overexpression of PKA catalytic subunit (PKAcat) suppressed FoxO reporter activity induced by (1) a wild-type; (2) a non-phosphorylatable; (3) a non-phosphorylatable and non-acetylatable forms of FoxO1 and FoxO3; (4) downregulation of FoxO protein content, and probably by (5) PGC-1α up-regulation. Consistently, the overexpression of the PKAcat inhibitor (PKI) up-regulated FoxO activity and the content of Atrogin-1 and MuRF1, as well as induced muscle fiber atrophy, the latter effect being prevented by the overexpression of a dominant negative (d. n.) form of FoxO (d.n.FoxO). The sustained overexpression of PKAcat induced fiber-type transition toward a smaller, slower, and more oxidative phenotype and improved muscle resistance to fatigue. Taken together, our data provide the first evidence that endogenous PKA activity is required to restrain the basal activity of FoxO and physiologically important to maintain skeletal muscle mass.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteína Forkhead Box O1/metabolismo , Músculo Esquelético/enzimologia , Atrofia Muscular/metabolismo , Animais , Linhagem Celular , Proteína Forkhead Box O3/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/patologia , Mioblastos Esqueléticos/enzimologia , Transdução de Sinais
15.
Mol Metab ; 28: 91-106, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31331823

RESUMO

OBJECTIVE: Although it is well established that a-calcitonin gene-related peptide (CGRP) stabilizes muscle-type cholinergic receptors nicotinic subunits (AChR), the underlying mechanism by which this neuropeptide regulates muscle protein metabolism and neuromuscular junction (NMJ) morphology is unclear. METHODS: To elucidate the mechanisms how CGRP controls NMJ stability in denervated mice skeletal muscles, we carried out physiological, pharmacological, and molecular analyses of atrophic muscles induced by sciatic nerve transection. RESULTS: Here, we report that CGRP treatment in vivo abrogated the deleterious effects on NMJ upon denervation (DEN), an effect that was associated with suppression of skeletal muscle proteolysis, but not stimulation of protein synthesis. CGRP also blocked the DEN-induced increase in endocytic AChR vesicles and the elevation of autophagosomes per NMJ area. The treatment of denervated animals with rapamycin blocked the stimulatory effects of CGRP on mTORC1 and its inhibitory actions on autophagic flux and NMJ degeneration. Furthermore, CGRP inhibited the DEN-induced hyperactivation of Ca2+-dependent proteolysis, a degradative system that has been shown to destabilize NMJ. Consistently, calpain was found to be activated by cholinergic stimulation in myotubes leading to the dispersal of AChR clusters, an effect that was abolished by CGRP. CONCLUSION: Taken together, these data suggest that the inhibitory effect of CGRP on autophagy and calpain may represent an important mechanism for the preservation of synapse morphology when degradative machinery is exacerbated upon denervation conditions.


Assuntos
Autofagia/efeitos dos fármacos , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Calpaína/antagonistas & inibidores , Músculo Esquelético/efeitos dos fármacos , Junção Neuromuscular/efeitos dos fármacos , Vasodilatadores/farmacologia , Animais , Calpaína/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Junção Neuromuscular/metabolismo
16.
J Cachexia Sarcopenia Muscle ; 10(2): 455-475, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30932373

RESUMO

BACKGROUND: Stimulation of ß2 -adrenoceptors can promote muscle hypertrophy and fibre type shift, and it can counteract atrophy and weakness. The underlying mechanisms remain elusive. METHODS: Fed wild type (WT), 2-day fasted WT, muscle-specific insulin (INS) receptor (IR) knockout (M-IR-/- ), and MKR mice were studied with regard to acute effects of the ß2 -agonist formoterol (FOR) on protein metabolism and signalling events. MKR mice express a dominant negative IGF1 receptor, which blocks both INS/IGF1 signalling. All received one injection of FOR (300 µg kg-1 subcutaneously) or saline. Skeletal muscles and serum samples were analysed from 30 to 240 min. For the study of chronic effects of FOR on muscle plasticity and function as well as intracellular signalling pathways, fed WT and MKR mice were treated with formoterol (300 µg kg-1  day-1 ) for 30 days. RESULTS: In fed and fasted mice, one injection of FOR inhibited autophagosome formation (LC3-II content, 65%, P ≤ 0.05) that was paralleled by an increase in serum INS levels (4-fold to 25-fold, P ≤ 0.05) and the phosphorylation of Akt (4.4-fold to 6.5-fold, P ≤ 0.05) and ERK1/2 (50% to two-fold, P ≤ 0.05). This led to the suppression (40-70%, P ≤ 0.05) of the master regulators of atrophy, FoxOs, and the mRNA levels of their target genes. FOR enhanced (41%, P ≤ 0.05) protein synthesis only in fed condition and stimulated (4.4-fold to 35-fold, P ≤ 0.05) the prosynthetic Akt/mTOR/p70S6K pathway in both fed and fasted states. FOR effects on Akt signalling during fasting were blunted in both M-IR-/- and MKR mice. Inhibition of proteolysis markers by FOR was prevented only in MKR mice. Blockade of PI3K/Akt axis and mTORC1, but not ERK1/2, in fasted mice also suppressed the acute FOR effects on proteolysis and autophagy. Chronic stimulation of ß2 -adrenoceptors in fed WT mice increased body (11%, P ≤ 0.05) and muscle (15%, P ≤ 0.05) growth and downregulated atrophy-related genes (30-40%, P ≤ 0.05), but these effects were abolished in MKR mice. Increases in muscle force caused by FOR (WT, 24%, P ≤ 0.05) were only partially impaired in MKR mice (12%, P ≤ 0.05), and FOR-induced slow-to-fast fibre type shift was not blocked at all in these animals. In MKR mice, FOR also restored the lower levels of muscle SDH activity to basal WT values and caused a marked reduction (57%, P ≤ 0.05) in the number of centrally nucleated fibers. CONCLUSIONS: NS/IGF1 signalling is necessary for the anti-proteolytic and hypertrophic effects of in vivo ß2 -adrenergic stimulation and appears to mediate FOR-induced enhancement of protein synthesis. INS/IGF1 signalling only partially contributes to gain in strength and does not mediate fibre type transition induced by FOR.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Fator de Crescimento Insulin-Like I/metabolismo , Insulina/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Proteostase/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Autofagia/efeitos dos fármacos , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas Musculares/metabolismo , Força Muscular , Músculo Esquelético/fisiopatologia , Fosfatidilinositol 3-Quinases , Proteólise , Proteínas Proto-Oncogênicas c-akt/metabolismo
17.
J Appl Physiol (1985) ; 122(5): 1114-1124, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-27932681

RESUMO

Although it is well known that chronic hypoxia induces muscle wasting, the effects of intermittent hypoxia on skeletal muscle protein metabolism remain unclear. We hypothesized that acute intermittent hypoxia (AIH), a challenge that activates the hypothalamic-pituitary-adrenal axis, would alter muscle protein homeostasis through a glucocorticoid-dependent mechanism. Three-week-old rats were submitted to adrenalectomy (ADX) and exposed to 8 h of AIH (6% O2 for 40 s at 9-min intervals). Animals were euthanized, and the soleus and extensor digitorum longus (EDL) muscles were harvested and incubated in vitro for measurements of protein turnover. AIH increased plasma levels of corticosterone and induced insulin resistance as estimated by the insulin tolerance test and lower rates of muscle glucose oxidation and the HOMA index. In both soleus and EDL muscles, rates of overall proteolysis increased after AIH. This rise was accompanied by an increased proteolytic activities of the ubiquitin(Ub)-proteasome system (UPS) and lysosomal and Ca2+-dependent pathways. Furthermore, AIH increased Ub-protein conjugates and gene expression of atrogin-1 and MuRF-1, two key Ub-protein ligases involved in muscle atrophy. In parallel, AIH increased the mRNA expression of the autophagy-related genes LC3b and GABARAPl1. In vitro rates of protein synthesis in skeletal muscles did not differ between AIH and control rats. ADX completely blocked the insulin resistance in hypoxic rats and the AIH-induced activation of proteolytic pathways and atrogene expression in both soleus and EDL muscles. These results demonstrate that AIH induces insulin resistance in association with activation of the UPS, the autophagic-lysosomal process, and Ca2+-dependent proteolysis through a glucocorticoid-dependent mechanism.NEW & NOTEWORTHY Since hypoxia is a condition in which the body is deprived of adequate oxygen supply and muscle wasting is induced, the present work provides evidence linking hypoxia to proteolysis through a glucocorticoid-dependent mechanism. We show that the activation of proteolytic pathways, atrophy-related genes, and insulin resistance in rats exposed to acute intermittent hypoxia was abolished by surgical removal of adrenal gland. This finding will be helpful for understanding of the muscle wasting in hypoxemic conditions.


Assuntos
Glucocorticoides/metabolismo , Hipóxia/fisiopatologia , Músculo Esquelético/fisiopatologia , Animais , Cálcio/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/fisiopatologia , Hipóxia/metabolismo , Resistência à Insulina/fisiologia , Lisossomos/metabolismo , Lisossomos/fisiologia , Masculino , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/fisiopatologia , Sistema Hipófise-Suprarrenal/metabolismo , Sistema Hipófise-Suprarrenal/fisiopatologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/fisiologia , Proteólise , Ratos , Ratos Wistar , Ubiquitina/metabolismo
18.
Int J Biochem Cell Biol ; 72: 40-50, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26718975

RESUMO

Calcitonin gene-related peptide (CGRP) is a neuropeptide released by motor neuron in skeletal muscle and modulates the neuromuscular transmission by induction of synthesis and insertion of acetylcholine receptor on postsynaptic muscle membrane; however, its role in skeletal muscle protein metabolism remains unclear. We examined the in vitro and in vivo effects of CGRP on protein breakdown and signaling pathways in control skeletal muscles and muscles following denervation (DEN) in rats. In isolated muscles, CGRP (10(-10) to 10(-6)M) reduced basal and DEN-induced activation of overall proteolysis in a concentration-dependent manner. The in vitro anti-proteolytic effect of CGRP was completely abolished by CGRP8-37, a CGRP receptor antagonist. CGRP down-regulated the lysosomal proteolysis, the mRNA levels of LC3b, Gabarapl1 and cathepsin L and the protein content of LC3-II in control and denervated muscles. In parallel, CGRP elevated cAMP levels, stimulated PKA/CREB signaling and increased Foxo1 phosphorylation in both conditions. In denervated muscles and starved C2C12 cells, Rp-8-Br-cAMPs or PKI, two PKA inhibitors, completely abolished the inhibitory effect of CGRP on Foxo1, 3 and 4 and LC3 lipidation. A single injection of CGRP (100 µg kg(-1)) in denervated rats increased the phosphorylation levels of CREB and Akt, inhibited Foxo transcriptional activity, the LC3 lipidation as well as the mRNA levels of LC3b and cathepsin L, two bona fide targets of Foxo. This study shows for the first time that CGRP exerts a direct inhibitory action on autophagic-lysosomal proteolysis in control and denervated skeletal muscle by recruiting cAMP/PKA signaling, effects that are related to inhibition of Foxo activity and LC3 lipidation.


Assuntos
Autofagia/efeitos dos fármacos , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Lisossomos/efeitos dos fármacos , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Denervação , Lisossomos/metabolismo , Masculino , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Músculo Esquelético/inervação , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar
19.
Nutrients ; 6(10): 3981-4001, 2014 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-25268835

RESUMO

This study investigated the effect of leucine supplementation on the skeletal muscle regenerative process, focusing on the remodeling of connective tissue of the fast twitch muscle tibialis anterior (TA). Young male Wistar rats were supplemented with leucine (1.35 g/kg per day); then, TA muscles from the left hind limb were cryolesioned and examined after 10 days. Although leucine supplementation induced increased protein synthesis, it was not sufficient to promote an increase in the cross-sectional area (CSA) of regenerating myofibers (p > 0.05) from TA muscles. However, leucine supplementation reduced the amount of collagen and the activation of phosphorylated transforming growth factor-ß receptor type I (TßR-I) and Smad2/3 in regenerating muscles (p < 0.05). Leucine also reduced neonatal myosin heavy chain (MyHC-n) (p < 0.05), increased adult MyHC-II expression (p < 0.05) and prevented the decrease in maximum tetanic strength in regenerating TA muscles (p < 0.05). Our results suggest that leucine supplementation accelerates connective tissue repair and consequent function of regenerating TA through the attenuation of TßR-I and Smad2/3 activation. Therefore, future studies are warranted to investigate leucine supplementation as a nutritional strategy to prevent or attenuate muscle fibrosis in patients with several muscle diseases.


Assuntos
Tecido Conjuntivo/metabolismo , Suplementos Nutricionais , Leucina/farmacologia , Músculo Esquelético/lesões , Tíbia , Animais , Colágeno/efeitos dos fármacos , Tecido Conjuntivo/efeitos dos fármacos , Tecido Conjuntivo/patologia , Leucina/administração & dosagem , Masculino , Músculo Esquelético/metabolismo , Miofibrilas/efeitos dos fármacos , Cadeias Pesadas de Miosina/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Ratos Wistar , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Regeneração/efeitos dos fármacos , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Espasmo/dietoterapia
20.
Am J Physiol Endocrinol Metab ; 305(12): E1483-94, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24169047

RESUMO

The physiological role of epinephrine in the regulation of skeletal muscle protein metabolism under fasting is unknown. We examined the effects of plasma epinephrine depletion, induced by adrenodemedullation (ADMX), on muscle protein metabolism in fed and 2-day-fasted rats. In fed rats, ADMX for 10 days reduced muscle mass, the cross-sectional area of extensor digitorum longus (EDL) muscle fibers, and the phosphorylation levels of Akt. In addition, ADMX led to a compensatory increase in muscle sympathetic activity, as estimated by the rate of norepinephrine turnover; this increase was accompanied by high rates of muscle protein synthesis. In fasted rats, ADMX exacerbated fasting-induced proteolysis in EDL but did not affect the low rates of protein synthesis. Accordingly, ADMX activated lysosomal proteolysis and further increased the activity of the ubiquitin (Ub)-proteasome system (UPS). Moreover, expression of the atrophy-related Ub ligases atrogin-1 and MuRF1 and the autophagy-related genes LC3b and GABARAPl1 were upregulated in EDL muscles from ADMX-fasted rats compared with sham-fasted rats, and ADMX reduced cAMP levels and increased fasting-induced Akt dephosphorylation. Unlike that observed for EDL muscles, soleus muscle proteolysis and Akt phosphorylation levels were not affected by ADMX. In isolated EDL, epinephrine reduced the basal UPS activity and suppressed overall proteolysis and atrogin-1 and MuRF1 induction following fasting. These data suggest that epinephrine released from the adrenal medulla inhibits fasting-induced protein breakdown in fast-twitch skeletal muscles, and these antiproteolytic effects on the UPS and lysosomal system are apparently mediated through a cAMP-Akt-dependent pathway, which suppresses ubiquitination and autophagy.


Assuntos
Epinefrina/deficiência , Jejum/metabolismo , Fibras Musculares de Contração Rápida/metabolismo , Proteólise , Tecido Adiposo/anatomia & histologia , Tecido Adiposo/efeitos dos fármacos , Medula Suprarrenal/fisiologia , Medula Suprarrenal/cirurgia , Animais , Composição Corporal/efeitos dos fármacos , Composição Corporal/fisiologia , Catecolaminas/sangue , Epinefrina/farmacologia , Masculino , Norepinefrina/sangue , Tamanho do Órgão/efeitos dos fármacos , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...